Healthcare Associated Infections: A Case-based Approach to Diagnosis and Management

Stephen G. Weber, MD, MS
Associate Professor, Section of Infectious Diseases and Global Health
Chief Medical Officer and Vice President for Clinical Effectiveness
University of Chicago Medicine
Chicago, IL

Cassandra D. Salgado, MD, MS
Associate Professor, Division of Infectious Diseases
Medical Director of Infection Control
Medical University of South Carolina
Charleston, SC
Contents

Contributors xi

1. Overview—a general approach to the management of healthcare-associated infections
   Stephen G. Weber and Cassandra D. Salgado
   a. Approach to the management of patients with suspected healthcare-associated infection 1
      Stephen G. Weber and Cassandra D. Salgado
   b. Overview of hospital-based infection prevention 9
      Stephen G. Weber and Cassandra D. Salgado

2. Respiratory infections
   Curtis J. Coley ll, Melissa A. Miller, Pranavi Sreeramoju, Jennifer C. Esbenshade, Thomas R. Talbot, Melanie Gerrior, and L.W. Preston Church
   a. Ventilator-associated pneumonia 17
      Curtis J. Coley ll and Melissa A. Miller
   b. Aspiration pneumonia 25
      Pranavi Sreeramoju
   c. Healthcare-associated Legionellosis 31
      Jennifer C. Esbenshade and Thomas R. Talbot
   d. Healthcare-associated viral pneumonia 37
      Jennifer C. Esbenshade and Thomas R. Talbot
   e. Mycobacterium tuberculosis 47
      Melanie Gerrior and L.W. Preston Church

3. Endovascular infections
   Natasha Bagdasarian, David B. Banach, Meghan Brennan, David P. Calfee, Kyle J. Popovich, Keith W. Hamilton, Michael Heung, Aimee Hodowanec, Ebbing Lautenbach, Michael J. Satlin, Christopher J. Crnich, and Preeti N. Malani
   a. Central line-associated bloodstream infection 53
      David B. Banach and David P. Calfee
   b. Staphylococcus aureus bacteremia and endocarditis 61
      Aimee Hodowanec and Kyle J. Popovich
c. Candidemia in the intensive care unit 69
Keith W. Hamilton and Ebbing Lautenbach

d. Central line tunnel infections 75
Michael J. Satlin and David P. Calfee

e. Intra-cardiac device infections 81
Meghan Brennan and Christopher J. Crnich

f. Arteriovenous fistula and graft infections 87
Natasha Bagdasarian, Michael Heung and Preeti N. Malani

4. Skin, soft tissue, and orthopedic infections
a. Necrotizing fasciitis after surgery 91
Rebekah Moehring and Stephen G. Weber
b. Varicella zoster among hospitalized patients 97
Shephali H. Patel and Michael Y. Lin
c. Scabies, bedbugs and other infestations in the hospital 103
Maureen Bolon
d. Prosthetic joint infection 109
Evgenia Kagan and Camelia Marculescu

5. Gastrointestinal and intra-abdominal infections
Carlene A. Muto, Andrew T. Root, Teresa R. Zembower, Sara Cosgrove, Sarah Miller, Sharon B. Wright, and David S. Yassa
a. Healthcare-associated Clostridium difficile infection 119
Carlene A. Muto
b. Herpes simplex virus esophagitis 127
Andrew T. Root and Teresa R. Zembower
c. Norovirus in the healthcare setting 133
Sarah Miller and Sara Cosgrove
d. Postoperative intraabdominal infection 139
David S. Yassa and Sharon B. Wright

6. Urinary tract infections
Ari Robicsek, and Courtney Hebert
a. Catheter-associated urinary tract infection 145
Courtney Hebert and Ari Robicsek

7. Infections in immunocompromised patients
Charlesnika T. Evans, Michael G. Ison, and Nicole Theodoropoulos
a. Healthcare-associated infection after solid organ transplant 153
Charlesnika T. Evans and Michael G. Ison
b. Healthcare acquired infections in hematopoietic stem cell transplant recipients 159
Nicole Theodoropoulos and Michael G. Ison

8. Issues in pediatrics
Sandra Fowler and Terry C. Dixon
a. Sepsis in a very low birth weight neonate 165
Sandra Fowler
b. Bordetella pertussis in healthcare 171
Terry C. Dixon
c. Respiratory syncytial virus in the neonatal intensive care unit 177
Sandra Fowler

9. Multidrug-resistant organisms and bioterrorism
Jeremy Storm, Daniel Diekema, Dror Marchaim, Keith Kaye, Cassandra D. Salgado, and J. Michael Kilby
a. The methicillin-resistant Staphylococcus aureus-colonized patient 181
Jeremy Storm and Daniel Diekema
b. Highly resistant gram-negative bacteria 191
Dror Marchaim and Keith Kaye
c. Vancomycin-resistant Enterococcus 197
Cassandra D. Salgado
d. Bioterrorism and hospital preparedness 205
J. Michael Kilby

Index 211
Contributors

Natasha Bagdasarian, MD, MPH
University of Michigan Health System,
Department of Internal Medicine
Divisions of General Medicine and
Infectious Diseases
Veteran Affairs Ann Arbor Health
System
Ann Arbor, MI

David B. Banach, MD, MPH
Division of Infectious Diseases
Weill Cornell Medical College
New York, NY

Maureen Bolon, MD, MS
Associate Professor of Medicine
Medical Director of Infection Control
and Prevention
Northwestern Memorial Hospital
Chicago, IL

Meghan Brennan, MD
University of Wisconsin School of
Medicine and Public Health
Madison, WI

David F. Calfee, MD, MS
Chief Hospital Epidemiologist
NewYork-Presbyterian Hospital/
Weill Cornell
Associate Professor of Medicine and
Public Health
Division of Infectious Diseases
Weill Cornell Medical College
New York, NY

L.W. Preston Church, MD
Hospital Epidemiologist
Ralph H. Johnson VA
Charleston, SC

Christopher J. Crnich, MD, MS
University of Wisconsin School of
Medicine and Public Health
William S. Middleton Veterans
Administration Hospital
Madison, WI

Curtis J. Coley II, MD
Division of Pulmonary and Critical Care
University of Michigan
Ann Arbor, MI

Sara Cosgrove, MD, MS
Associate Professor of Medicine,
Division of Infectious Diseases
Director, Antimicrobial Stewardship
Program
Associate Hospital Epidemiologist
Johns Hopkins Medical Institutions
Baltimore, MD

Daniel Diekema, MD
Division of Infectious Diseases
Department of Internal Medicine
University of Iowa Carver College of
Medicine
Iowa City, IA

Terry C. Dixon, MD, PhD
Division of Pediatric Infectious
Diseases
Department of Pediatrics
Medical University of South Carolina
Charleston, SC

Jennifer C. Esbenshade,
MD, MPH
Vanderbilt University School of
Medicine
Department of Pediatrics, Division of
Hospital Medicine
Nashville, TN
Charlesnika T. Evans, PhD, MPH
Center for Management of Complex Chron Care
Edward Hines Jr. Department of Veterans Affairs Hospital
Hines, IL
Institute for Healthcare Studies Northwestern University
Transplant Outcomes Collaborative (NUTORC)
Feinberg School of Medicine, Northwestern University Chicago, IL

Sandra Fowler, MD, MSc
Associate Professor of Pediatrics Director, Division of Pediatric Infectious Diseases Medical University of South Carolina Charleston, SC

Melanie Gerrior, MD
Division of Infectious Diseases Medical University of South Carolina Charleston, SC

Keith W. Hamilton, MD
University of Pennsylvania School of Medicine Philadelphia, PA

Courtney Hebert, MD
Post-Doctoral Researcher Department of Biomedical Informatics Clinical Assistant Professor Division of Infectious Diseases The Ohio State University Wexner Medical Center Columbus, OH

Michael Heung, MD, MS
University of Michigan Health System, Department of Internal Medicine Division of Nephrology Ann Arbor, Ml

Aimee Hodowanec, MD
Rush University Medical Center and Stroger Hospital of Cook County Chicago, IL

Michael G. Ison, MD, MS
Divisions of Infectious Diseases and Organ Transplantation Northwestern University Comprehensive Transplant Center Feinberg School of Medicine, Northwestern University Chicago, IL

Evgenia Kagan, MD
Assistant Professor of Medicine Division of Infectious Diseases Medical University of South Carolina Charleston, SC

Keith Kaye, MD
Division of Infectious Diseases Wayne State University Detroit, MI

J. Michael Kilby, MD
Professor of Medicine and Microbiology/Immunology Director, Division of Infectious Diseases Medical University of South Carolina Charleston, SC

Ebbing Lautenbach, MD, MPH, MSCE
Associate Professor of Medicine and Epidemiology Senior Scholar, Center for Clinical Epidemiology and Biostatistics Associate Director, Clinical Epidemiology Unit (Educational Programs) Director of Research, Department of Healthcare Epidemiology and Infection Control University of Pennsylvania School of Medicine Philadelphia, PA
Thomas R. Talbot, MD, MPH
Vanderbilt University School of Medicine
Department of Medicine, Division of Infectious Diseases
Nashville, TN

Nicole Theodoropoulos, MD
Divisions of Infectious Diseases and Organ Transplantation
Northwestern University Comprehensive Transplant Center
Northwestern University Feinberg School of Medicine
Chicago, IL

Stephen G. Weber, MD, MS
Associate Professor, Section of Infectious Diseases and Global Health
Chief Medical Officer and Vice President for Clinical Effectiveness
University of Chicago Medicine
Chicago, IL

Sharon B. Wright, MD
Silverman Institute for Healthcare Quality and Division of Infectious Diseases
Beth Israel Deaconess Medical Center
Boston, MA

David S. Yassa, MD
Silverman Institute for Healthcare Quality and Division of Infectious Diseases
Beth Israel Deaconess Medical Center
Boston, MA

Teresa R. Zembower, MD, MPH
Northwestern University Feinberg School of Medicine
Division of Infectious Disease
Chicago, IL
Disclosure statements

Natasha Bagdasarian has nothing to disclose.
David B. Banach has nothing to disclose.
Maureen Bolon has nothing to disclose.
Meghan Brennan has nothing to disclose.
David P. Calfee received research support from the Association of American Medical Colleges.
L.W. Preston Church is a speaker for "The Faces of Flu," a program sponsored by Rush University with support via unrestricted educational grants from Gilead and Genentech.
Christopher J. Crnich has received research support from the University of Wisconsin CTSA and the Hartford Center for Excellence.
Curtis J. Coley II has nothing to disclose.
Sara Cosgrove has nothing to disclose.
Daniel Dieken a has received research support from Merck, Pfizer, Innovative Biosensors, bioMerieux, Cerexa, and PurThread Technologies.
Terry C. Dixon has nothing to disclose.
Jennifer C. Esbenshade has received research support from MedImmune.
Charlesnika T. Evans has received research funding from Merck.
Sandra Fowler has nothing to disclose.
Melanie Gerrior has nothing to disclose.
Keith W. Hamilton has nothing to disclose.
Courtney Hebert has nothing to disclose.
Michael Heung has nothing to disclose.
Almee Hodowanec has nothing to disclose.
Michael G. Ison has received research support from BioCryst, Chimerix, GlaxoSmithKlein, Roche, and ViraCor; has been a paid consultant for Crucell and Toyama/MediVector; has been an unpaid consultant for BioCryst, Biota, Cellex, Clarassence, GlaxoSmithKlein, MP Bioscience, NexBio, Genentech/Roche, Toyama, and T2 Diagnostics; and has been on data and safety monitoring boards for Chimerix and NexBio.
Evgenia Kagan has nothing to disclose.
Keith Kaye has received honoraria from Cubist and has served a consultant for Merck, Pfizer, and Theradoc.
J. Michael Kilby has nothing to disclose.
Ebbing Lautenbach has nothing to disclose.
Michael Y. Lin has nothing to disclose.
Preeti N. Malani has nothing to disclose.
Dror Marchaim has nothing to disclose.
Camelia Marculescu has nothing to disclose.
Melissa A. Miller has received research support from an NIH/NHLBI training grant.
Sarah Miller has nothing to disclose.
Rebekah Moehring has nothing to disclose.
Carlene A. Muto was on a speaker bureau for Robert Michael Educational Institute LLC.
Kyle J Popovich has nothing to disclose.
Ari Robicsek has nothing to disclose.
Andrew T. Root has nothing to disclose.
Cassandra D. Salgado has received research funding from the Department of defense and AHRQ.
Michael J. Satlin has nothing to disclose.
Pranavi Sreeramoju has nothing to disclose.
Jeremy Storm has nothing to disclose.
Thomas R. Talbot received research support from Sanofi Pasteur and has served a consultant for Joint Community Resources, Community Health Systems.
Nicole Theodoropoulos has nothing to disclose.
Stephen G. Weber has consulted for Joint Commission Resources.
Sharon B. Wright was a speaker and developer for the SHEA/CDC Healthcare-Associated Infections Course.
Shephali H. Patel has nothing to disclose.
David S. Yassa has nothing to disclose.
Teresa R. Zembower has nothing to disclose.
Chapter 7a

Healthcare-Associated Infection after Solid Organ Transplant

Charlesinka T. Evans and Michael G. Ison

Case Presentation

The patient is a 48-year-old African American male who underwent cadaveric renal transplant 1 week prior to presentation. He has a history of hypertension, diabetes mellitus, coronary artery disease, hypercholesterolemia, and morbid obesity (BMI = 43). He is currently taking tacrolimus, mycophenolate mofetil, valganciclovir, trimethoprim-sulfamethoxazole, clotrimazole troches, insulin, aspirin, simvastatin, and metoprolol. Additionally, he received alemtuzumab and methylprednisolone for induction immunosuppression perioperatively. Clinically he did well after transplantation, rapidly made urine, and had a decline in his creatinine from 6.4 mg/dl immediately pretransplant to 2.2 on postoperative day 2. He returns now for routine postsurgical follow-up and is noted to have erythema, pain, and induration around the inferior one-third of the incision; he has had no fevers. No purulent drainage is expressed on palpation and his white blood cell count is 3.2; creatinine is 1.1 mg/dl. Two staples are removed from the incision and he is started on an oral first generation cephalosporin.

Differential Diagnosis and Initial Management

Solid-organ transplantation (SOT) is now considered the definitive management option for most patients with end-stage organ failure. Improvements in surgical techniques, immune suppression, and antimicrobial prophylaxis have reduced the frequency of rejection and prolonged graft survival after SOT. However, infections, whether they are healthcare-associated, opportunistic, or community-acquired remain a significant and frequent cause of morbidity and mortality following SOT. In general, infectious complications occur in three major time periods: early (0–30 days posttransplant), during peak immune suppression (31–180 days post-transplant), and late (181+ days posttransplant). Although healthcare-associated infections can occur at any time, most occur during the early posttransplant period and are typical of other healthcare-associated infections recognized after elective surgery. Presentation, though,
is often modulated by the use of immune suppression; as a result, signs and symptoms may be muted.

The development of pneumonia, bloodstream infection (BSI), surgical site infection (SSI), and urinary tract infection (UTI) occur in all types of transplantation, although they vary by solid organ received. For example, there is a higher rate of pneumonia among lung transplant recipients and a higher rate of UTI among renal transplant recipients. Reported rates of pneumonia, BSI, and UTI episodes in heart and lung transplantation range from 14 to 138 infections per 100 patients for pneumonia, 4.1 to 29 infections per 100 patients for BSI, and 2.6 to 21.6 infections per 100 patients for UTI. Most HAIs occur within the first 30 days posttransplantation and SSIs are the most frequent within this time period, although post-transplant wound infections can occur up to a year after surgery. These infections are highest in abdominal transplantation (kidney and liver), with estimates from the literature up to 18.6% in kidney transplantation and up to 37.6% for liver transplantation. The Centers for Disease Control and Prevention (CDC) National Healthcare Safety Network (NHSN) collects data on HAIs in over 1,000 medical facilities; however, only 9 are transplant centers. The limited NHSN data suggest that SSIs in high-risk kidney transplant (6.6/100 operations) and liver transplant recipients (20.1/100 operations) are higher than in comparable nontransplant procedures (4.5 and 13.7, respectively). The most common risk factors for SSI include patient demographic and medical characteristics such as age, body mass index, severe hyperglycemia, and surgery characteristics such as duration of operation and previous surgery.

Initial management of individual HAIs should be consistent with local standard-of-care practice and antimicrobial resistance patterns and detailed management guidelines are available from the American Society of Transplantation’s Infectious Diseases Community of Practice. Some important points to note include: (1) Renal function is often abnormal in most transplant recipients; as such, any prescribed antimicrobial should be adjusted based on the individual patient’s estimated creatinine clearance. (2) Drug interactions between frequently prescribed antimicrobials and antirejection medications can complicate the management of such patients and may result in either over- or under-immunosuppression. (3) Foreign bodies (i.e., ureteral stents, biliary T-tubes) may be placed during the transplant procedure and should be taken into consideration in determining the duration of antimicrobial therapy. Discontinuation of antimicrobial therapy before removal of such foreign bodies may allow the infection to relapse. (4) Involvement of the transplant team (especially Transplant Infectious Diseases clinicians if available) at your center is critical. They may often be aware of unique surgical or host characteristics useful for diagnosis and management of the infection. (5) It is critical to consider the donor as the source of any early post-transplant infections presenting in the recipient. A careful review of all donor cultures should be conducted to help inform concern about a potential disease transmission. If a donor-derived disease transmission is considered, this should be reported immediately to the leadership at your transplant center, to your local organ procurement organization, and the national Organ Procurement and Transplant Network (currently the United Network for Organ Sharing). This is critical because it
as a result, signs and symptoms (BSI), surgical site infections (SSI), and a higher rate of pneumonia, BSI, and mortality developed in the 14 to 138 infections in 100 patients for BSI. Also, Allos occur within the first 12 hours. Some infections may occur up to a year post-transplantation (14.4%) in kidney transplant recipients. However, only 9.8% of high-risk kidney transplant recipients (20.1/100 operations) are included in the NHSN database. The median patient age was 54 years, and the median length of stay was 11 days. Previous antibiotic exposure is a risk factor for infections with antibiotic-resistant microorganisms, including MRSA, VRE, and multidrug-resistant gram negatives. The prevalence of these resistant organisms varies by region and many of these organisms have been increasing in transplant recipients and can cause significant morbidity and mortality.

Methicillin-resistant S. aureus is responsible for 2.7% to 24% of SSIs in solid organ transplant recipients and 5.9% of BSIs. Colonization with MRSA in liver transplant recipients is associated with a high incidence rate of MRSA infection (31% to 87%). Reports have indicated that VRE may cause 5% to 11% of infections in liver transplant recipients. Resistance in gram-negative organisms, such as ESBL-producing or carbapenem-resistant K. pneumoniae and P. aeruginosa, are also increasing among SOT recipients. One study found that in SSIs, 80% of K. pneumoniae were ESBL-producing and 33.3% of P. aeruginosa isolates were carbapenem-resistant among kidney recipients.

Prevention and Next Steps

Both the CDC and the American College of Surgeons, through the National Surgical Quality Improvement Program, have extensively studied and developed guidance to minimize post-surgical HAIs in nontransplant settings (Table 7.1).
<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level of Evidence for Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preoperative</td>
<td></td>
</tr>
<tr>
<td>Preparation of the patient including: treating all current infections, hair</td>
<td>Category IA-IB, Category IB</td>
</tr>
<tr>
<td>removal, obtaining appropriate chemistry/hematology tests, and preoperative</td>
<td></td>
</tr>
<tr>
<td>maintenance of surgical area</td>
<td></td>
</tr>
<tr>
<td>Hand/forearm antisepsis for surgical team members including cutting and</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>cleaning nails and scrubbing arms</td>
<td></td>
</tr>
<tr>
<td>Management of infected or colonized surgical personnel through education and</td>
<td>Category IB</td>
</tr>
<tr>
<td>encouragement of reporting of symptoms and developing policies related to</td>
<td></td>
</tr>
<tr>
<td>personnel responsibility, work restrictions, and clearance to resume work</td>
<td></td>
</tr>
<tr>
<td>Appropriate antimicrobial prophylaxis</td>
<td>Category IA-IB</td>
</tr>
<tr>
<td>Intraoperative</td>
<td></td>
</tr>
<tr>
<td>Maintenance of appropriate ventilation in operating room</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>Cleaning and disinfection of environmental surfaces</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>Performance of environmental microbiologic sampling only in cases of</td>
<td>Category IB</td>
</tr>
<tr>
<td>epidemiologic investigation</td>
<td></td>
</tr>
<tr>
<td>Appropriate sterilization of surgical instruments</td>
<td>Category IB</td>
</tr>
<tr>
<td>Use and changing of surgical attire (masks, gloves, gowns), when appropriate</td>
<td>Category IB</td>
</tr>
<tr>
<td>Adherence to aseptic technique</td>
<td>Category IA-IB, Category IB</td>
</tr>
<tr>
<td>Postoperative incision care</td>
<td></td>
</tr>
<tr>
<td>Protection of incision with sterile dressing and use of sterile technique</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>and washing hands when changing dressings</td>
<td></td>
</tr>
<tr>
<td>Education of patients and family about proper care of incision and</td>
<td>Category II</td>
</tr>
<tr>
<td>potential symptoms of infection</td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td></td>
</tr>
<tr>
<td>Use CDC definitions for SSI case finding; conducting both surveillance in</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>the inpatient setting and postdischarge.</td>
<td></td>
</tr>
<tr>
<td>Document surgical wound classification and variables known to be associated</td>
<td>Category IB, Category IB</td>
</tr>
<tr>
<td>with SSI risk</td>
<td></td>
</tr>
<tr>
<td>Calculate and review SSI rates periodically.</td>
<td>Category IB</td>
</tr>
</tbody>
</table>

*Category IA: Strongly recommended for implementation and supported by well-designed experimental, clinical, or epidemiological studies. Category IB: Strongly recommended for implementation and supported by some experimental, clinical, or epidemiological studies and strong theoretical rationale. Category II: Suggested for implementation and supported by suggestive clinical or epidemiological studies or theoretical rationale.

Recommendations for prevention of SSI focus on preoperative patient and surgical team factors, intraoperative issues related to the environment of the operating room and aseptic technique, postoperative incision care, and conducting appropriate surveillance for SSIs in the inpatient setting as well as postdischarge. However, little work has been performed in transplantation. Additional work
needed to improve the current surveillance for HAI in SOT and develop interventions to reduce the rate of HAI.

**Case Conclusion**

After initial clinical improvement and appropriate drainage of the fluid collection, the patient's antibiotic regimen was reduced to meropenem and he received a total of 14 days and was discharged from the hospital. He was seen in follow-up 7 days later and had resolution of his infection. He continues to do well.

**Suggested Reading**


